Source code for tigramite.data_processing

"""Tigramite data processing functions."""

# Authors: Jakob Runge <jakob@jakob-runge.com>
#          Andreas Gerhardus <andreas.gerhardus@dlr.de>
# License: GNU General Public License v3.0

from __future__ import print_function
from collections import defaultdict, OrderedDict
import sys
import warnings
from copy import deepcopy
import math
import numpy as np
import scipy.sparse
import scipy.sparse.linalg
from scipy import stats
from numba import jit

[docs]class DataFrame(): """Data object containing single or multiple time series arrays and optional mask, as well as variable definitions. Parameters ---------- data : array-like if analysis_mode == 'single': Numpy array of shape (observations T, variables N) OR Dictionary with a single entry whose value is a numpy array of shape (observations T, variables N) if analysis_mode == 'multiple': Numpy array of shape (multiple datasets M, observations T, variables N) OR Dictionary whose values are numpy arrays of shape (observations T_i, variables N), where the number of observations T_i may vary across the multiple datasets but the number of variables N is fixed. mask : array-like, optional (default: None) Optional mask array, must be of same format and shape as data. data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. missing_flag : number, optional (default: None) Flag for missing values in dataframe. Dismisses all time slices of samples where missing values occur in any variable. For remove_missing_upto_maxlag=True also flags samples for all lags up to 2*tau_max (more precisely, this depends on the cut_off argument in self.construct_array(), see further below). This avoids biases, see section on masking in Supplement of Runge et al. SciAdv (2019). vector_vars : dict Dictionary of vector variables of the form, Eg. {0: [(0, 0), (1, 0)], 1: [(2, 0)], 2: [(3, 0)], 3: [(4, 0)]} The keys are the new vectorized variables and respective tuple values are the individual components of the vector variables. In the method of construct_array(), the individual components are parsed from vector_vars and added (accounting for lags) to the list that creates X, Y and Z for conditional independence test. var_names : list of strings, optional (default: range(N)) Names of variables, must match the number of variables. If None is passed, variables are enumerated as [0, 1, ...] datatime : array-like, optional (default: None) Timelabel array. If None, range(T) is used. remove_missing_upto_maxlag : bool, optional (default: False) Whether to remove not only missing samples, but also all neighboring samples up to max_lag (as given by cut_off in construct_array). analysis_mode : string, optional (default: 'single') Must be 'single' or 'multiple'. Determines whether data contains a single (potentially multivariate) time series (--> 'single') or multiple time series (--> 'multiple'). reference_points : None, int, or list (or 1D array) of integers, optional (default:None) Determines the time steps --- relative to the shared time axis as defined by the optional time_offset argument (see below) --- that are used to create samples for conditional independence testing. Set to [0, 1, ..., T_max-1] if None is passed, where T_max is self.largest_time_step, see below. All values smaller than 0 and bigger than T_max-1 will be ignored. At least one value must be in [0, 1, ..., T_max-1]. time_offsets : None or dict, optional (default: None) if analysis_mode == 'single': Must be None. Shared time axis defined by the time indices of the single time series if analysis_mode == 'multiple' and data is numpy array: Must be None. All datasets are assumed to be already aligned in time with respect to a shared time axis, which is the time axis of data if analysis_mode == 'multiple' and data is dictionary: Must be dictionary of the form {key(m): time_offset(m), ...} whose set of keys agrees with the set of keys of data and whose values are non-negative integers, at least one of which is 0. The value time_offset(m) defines the time offset of dataset m with respect to a shared time axis. Attributes ---------- self._initialized_from : string Specifies the data format in which data was given at instantiation. Possible values: '2d numpy array', '3d numpy array', 'dict'. self.values : dictionary Dictionary holding the observations given by data internally mapped to a dictionary representation as follows: If analysis_mode == 'single': for self._initialized_from == '2d numpy array' this is {0: data} and for self._initialized_from == 'dict' this is data. If analysis_mode == 'multiple': If self._initialized_from == '3d numpy array', this is {m: data[m, :, :] for m in range(data.shape[0])} and for self._initialized_from == 'dict' this is data. self.datasets: list List of the keys identifiying the multiple datasets, i.e., list(self.values.keys()) self.mask : dictionary Mask internally mapped to a dictionary representation in the same way as data is mapped to self.values self.data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. self.missing_flag: Is missing_flag self.var_names: If var_names is not None: Is var_names If var_names is None: Is {i: i for i in range(self.N)} self.datatime : dictionary Time axis for each of the multiple datasets. self.analysis_mode : string Is analysis_mode self.reference_points: array-like If reference_points is not None: 1D numpy array holding all specified reference_points, less those smaller than 0 and larger than self.largest_time_step-1 If reference_points is None: Is np.array(self.largest_time_step) self.time_offsets : dictionary If time_offsets is not None: Is time_offsets If time_offsets is None: Is {key: 0 for key in self.values.keys()} self.M : int Number of datasets self.N : int Number of variables (constant across datasets) self.T : dictionary Dictionary {key(m): T(m), ...}, where T(m) is the time length of datasets m and key(m) its identifier as in self.values self.largest_time_step : int max_{0 <= m <= M} [ T(m) + time_offset(m)], i.e., the largest (latest) time step relative to the shared time axis for which at least one observation exists in the dataset. self.bootstrap : dictionary Whether to use bootstrap. Must be a dictionary with keys random_state, boot_samples, and boot_blocklength. """ def __init__(self, data, mask=None, missing_flag=None, vector_vars=None, var_names=None, data_type=None, datatime=None, analysis_mode ='single', reference_points=None, time_offsets=None, remove_missing_upto_maxlag=False): # Check that a valid analysis mode, specified by the argument # 'analysis_mode', has been chosen if analysis_mode in ['single', 'multiple']: self.analysis_mode = analysis_mode else: raise ValueError("'analysis_mode' is '{}', must be 'single' or "\ "'multiple'.".format(analysis_mode)) # Check for correct type and format of 'data', internally cast to the # analysis mode 'multiple' case in dictionary representation if self.analysis_mode == 'single': # In this case the 'time_offset' functionality must not be used if time_offsets is not None: raise ValueError("'time_offsets' must be None in analysis "\ "mode'single'.") # 'data' must be either # - np.ndarray of shape (T, N) # - np.ndarray of shape (1, T, N) # - a dictionary with one element whose value is a np.ndarray of # shape (T, N) if isinstance(data, np.ndarray): _data_shape = data.shape if len(_data_shape) == 2: self.values = {0: np.copy(data)} self._initialized_from = "2d numpy array" elif len(_data_shape) == 3 and _data_shape[0] == 1: self.values = {0: np.copy(data[0, :, :])} self._initialized_from = "3d numpy array" else: raise TypeError("In analysis mode 'single', 'data' given "\ "as np.ndarray. 'data' is of shape {}, must be of "\ "shape (T, N) or (1, T, N).".format(_data_shape)) elif isinstance(data, dict): if len(data) == 1: _data = next(iter(data.values())) if isinstance(_data, np.ndarray): if len(_data.shape) == 2: self.values = data.copy() self._initialized_from = "dict" else: raise TypeError("In analysis mode 'single', "\ "'data'given as dictionary. The single value "\ "is a np.ndarray of shape {}, must be of "\ "shape (T, N).".format(_data.shape)) else: raise TypeError("In analysis mode 'single', 'data' "\ "given as dictionary. The single value is of type "\ "{}, must be np.ndarray.".format(type(_data))) else: raise ValueError("In analysis mode 'single', 'data' given "\ "as dictionary. There are {} entries in 'data', there "\ "must be exactly one entry.".format(len(data))) else: raise TypeError("In analysis mode 'single'. 'data' is of type "\ "{}, must be np.ndarray or dict.".format(type(data))) elif self.analysis_mode == 'multiple': # 'data' must either be a # - np.ndarray of shape (M, T, N) # - dict whose values of are np.ndarray of shape (T_i, N), where T_i # may vary across the values if isinstance(data, np.ndarray): _data_shape = data.shape if len(_data_shape) == 3: self.values = {i: np.copy(data[i, :, :]) for i in range(_data_shape[0])} self._initialized_from = "3d numpy array" else: raise TypeError("In analysis mode 'multiple', 'data' "\ "given as np.ndarray. 'data' is of shape {}, must be "\ "of shape (M, T, N).".format(_data_shape)) # In this case the 'time_offset' functionality must not be used if time_offsets is not None: raise ValueError("In analysis mode 'multiple'. Since "\ "'data' is given as np.ndarray, 'time_offsets' must "\ "be None.") elif isinstance(data, dict): _N_list = set() for dataset_key, dataset_data in data.items(): if isinstance(dataset_data, np.ndarray): _dataset_data_shape = dataset_data.shape if len(_dataset_data_shape) == 2: _N_list.add(_dataset_data_shape[1]) else: raise TypeError("In analysis mode 'multiple', "\ "'data' given as dictionary. 'data'[{}] is of "\ "shape {}, must be of shape (T_i, N).".format( dataset_key, _dataset_data_shape)) else: raise TypeError("In analysis mode 'multiple', 'data' "\ "given as dictionary. 'data'[{}] is of type {}, "\ "must be np.ndarray.".format(dataset_key, type(dataset_data))) if len(_N_list) == 1: self.values = data.copy() self._initialized_from = "dict" else: raise ValueError("In analysis mode 'multiple', 'data' "\ "given as dictionary. All entries must be np.ndarrays "\ "of shape (T_i, N), where T_i may vary across the "\ "entries while N must not vary. In the given 'data' N "\ "varies.") else: raise TypeError("In analysis mode 'multiple'. 'data' is of "\ "type {}, must be np.ndarray or dict.".format(type(data))) # Store the keys of the datasets in a separated attribute self.datasets = list(self.values.keys()) # Save the data format and check for NaNs: self.M = len(self.values) # (Number of datasets) self.T = dict() # (Time lengths of the individual datasets) for dataset_key, dataset_data in self.values.items(): if np.isnan(dataset_data).sum() != 0: raise ValueError("NaNs in the data.") _dataset_data_shape = dataset_data.shape self.T[dataset_key] = _dataset_data_shape[0] self.Ndata = _dataset_data_shape[1] # (Number of variables) # N does not vary across the datasets # Setup dictionary of variables for vector mode self.vector_vars = vector_vars if self.vector_vars is None: self.vector_vars = dict(zip(range(self.Ndata), [[(i, 0)] for i in range(self.Ndata)])) self.has_vector_data = False else: self.has_vector_data = True # TODO: check vector_vars! self.N = len(self.vector_vars) # Warnings if self.analysis_mode == 'single' and self.N > next(iter(self.T.values())): warnings.warn("In analysis mode 'single', 'data'.shape = ({}, {});"\ " is it of shape (observations, variables)?".format(self.T[0], self.N)) if self.analysis_mode == 'multiple' and self.M == 1: warnings.warn("In analysis mode 'multiple'. There is just a "\ "single dataset, is this as intended?'") # Save the variable names. If unspecified, use the default if var_names is None: self.var_names = {i: i for i in range(self.N)} else: self.var_names = var_names self.mask = None if mask is not None: self.mask = self._check_mask(mask = mask) self.data_type = None if data_type is not None: self.data_type = self._check_mask(mask = data_type, check_data_type=True) # Check and prepare the time offsets self._check_and_set_time_offsets(time_offsets) self.time_offsets_is_none = time_offsets is None # Set the default datatime if unspecified if datatime is None: self.datatime = {m: np.arange(self.time_offsets[m], self.time_offsets[m] + self.T[m]) for m in self.values.keys()} else: if not isinstance(datatime, dict): self.datatime = {0: datatime} else: self.datatime = datatime # Save the largest/smallest relevant time step self.largest_time_step = np.add(np.asarray(list(self.T.values())), np.asarray(list(self.time_offsets.values()))).max() self.smallest_time_step = np.add(np.asarray(list(self.T.values())), np.asarray(list(self.time_offsets.values()))).min() # Check and prepare the reference points self._check_and_set_reference_points(reference_points) self.reference_points_is_none = reference_points is None # Save the 'missing_flag' value self.missing_flag = missing_flag if self.missing_flag is not None: for dataset_key in self.values: self.values[dataset_key][self.values[dataset_key] == self.missing_flag] = np.nan self.remove_missing_upto_maxlag = remove_missing_upto_maxlag # If PCMCI.run_bootstrap_of is called, then the # bootstrap random draw can be set here self.bootstrap = None def _check_mask(self, mask, check_data_type=False): """Checks that the mask is: * The same shape as the data * Is an numpy ndarray (or subtype) * Does not contain any NaN entries """ # Check that there is a mask if required _use_mask = mask # If we have a mask, check it if _use_mask is not None: # Check data type and generic format of 'mask', map to multiple datasets mode # dictionary representation if isinstance(_use_mask, np.ndarray): if len(_use_mask.shape) == 2: _use_mask_dict = {0: _use_mask} elif len(_use_mask.shape) == 3: if _use_mask.shape[0] == self.M: _use_mask_dict = {i: _use_mask[i, :, :] for i in range(self.M)} else: raise ValueError("Shape mismatch: {} datasets "\ " in 'data' but {} in 'mask', must be "\ "identical.".format(self.M, _use_mask.shape[0])) else: raise TypeError("'data' given as 3d np.ndarray. "\ "'mask' is np.ndarray of shape {}, must be of "\ "shape (M, T, N).".format(_use_mask.shape)) elif isinstance(_use_mask, dict): if len(_use_mask) == self.M: for dataset_key in self.values.keys(): if _use_mask.get(dataset_key) is None: raise ValueError("'data' has key {} (type {}) "\ "but 'mask' does not, keys must be "\ "identical.".format(dataset_key, type(dataset_key))) _use_mask_dict = _use_mask else: raise ValueError("Shape mismatch: {} datasets "\ "in 'data' but {} in 'mask', must be "\ "identical.".format(self.M, len(_use_mask))) else: raise TypeError("'mask' is of type "\ "{}, must be dict or array.".format(type(_use_mask))) # Check for consistency with shape of 'self.values' and for NaNs for dataset_key, dataset_data in self.values.items(): _use_mask_dict_data = _use_mask_dict[dataset_key] if _use_mask_dict_data.shape == dataset_data.shape: if np.sum(np.isnan(_use_mask_dict_data)) != 0: raise ValueError("NaNs in the data mask") if check_data_type: if not set(np.unique(_use_mask_dict_data)).issubset(set([0, 1])): raise ValueError("Type mask contains other values than 0 and 1") else: if self.analysis_mode == 'single': raise ValueError("Shape mismatch: 'data' is of shape "\ "{}, 'mask' is of shape {}. Must be "\ "identical.".format(dataset_data.shape, _use_mask_dict_data.shape)) elif self.analysis_mode == 'multiple': raise ValueError("Shape mismatch: dataset {} "\ "is of shape {} in 'data' and of shape {} in "\ "'mask'. Must be identical.".format(dataset_key, dataset_data.shape, _use_mask_dict_data.shape)) # Return the mask in dictionary format return _use_mask_dict def _check_and_set_time_offsets(self, time_offsets): """Check the argument 'time_offsets' for consistency and bring into canonical format""" if time_offsets is not None: assert self.analysis_mode == 'multiple' assert self._initialized_from == 'dict' # Check data type and generic format of 'time_offsets', map to # dictionary representation if isinstance(time_offsets, dict): if len(time_offsets) == self.M: for dataset_key in self.values.keys(): if time_offsets.get(dataset_key) is None: raise ValueError("'data' has key {} (type {}) but "\ "'time_offsets' does not, keys must be "\ "identical.".format(dataset_key, type(dataset_key))) self.time_offsets = time_offsets else: raise ValueError("Shape mismatch: {} datasets in "\ "'data' but {} in 'time_offsets', must be "\ "identical.".format(self.M, len(time_offsets))) else: raise TypeError("'time_offsets' is of type {}, must be "\ "dict.".format(type(time_offsets))) # All time offsets must be non-negative integers, at least one of # which is zero found_zero_time_offset = False for time_offset in self.time_offsets.values(): if np.issubdtype(type(time_offset), np.integer): if time_offset >= 0: if time_offset == 0: found_zero_time_offset = True else: raise ValueError("A dataset has time offset "\ "{}, must be non-negative.".format(time_offset)) else: raise TypeError("There is a time offset of type {}, must "\ "be int.".format(type(time_offset))) if not found_zero_time_offset: raise ValueError("At least one time offset must be 0.") else: # If no time offsets are specified, all of them are zero self.time_offsets = {dataset_key: 0 for dataset_key in self.values.keys()} def _check_and_set_reference_points(self, reference_points): """Check the argument 'reference_point' for consistency and bring into canonical format""" # Check type of 'reference_points' and its elements if reference_points is None: # If no reference point is specified, use as many reference points # as possible self.reference_points = np.arange(self.largest_time_step) elif isinstance(reference_points, int): # If a single reference point is specified as an int, convert it to # a single element numpy array self.reference_points = np.array([reference_points]) elif isinstance(reference_points, np.ndarray): # Check that all reference points are ints for ref_point in reference_points: if not np.issubdtype(type(ref_point), np.integer): raise TypeError("All reference points must be integers.") self.reference_points = reference_points elif isinstance(reference_points, list): # Check that all reference points are ints for ref_point in reference_points: if not isinstance(ref_point, int): raise TypeError("All reference points must be integers.") # If given as a list, cast to numpy array self.reference_points = np.asarray(reference_points) else: raise TypeError("Unsupported data type of 'reference_points': Is "\ "{}, must be None or int or a list or np.ndarray of "\ "ints.".format(type(reference_points))) # Remove negative reference points if np.sum(self.reference_points < 0) > 0: warnings.warn("Some reference points were negative. These are "\ "removed.") self.reference_points = self.reference_points[self.reference_points >= 0] # Remove reference points that are larger than the largest time step if np.sum(self.reference_points >= self.largest_time_step) > 0: warnings.warn("Some reference points were larger than the largest "\ "relevant time step, which here is {}. These are "\ "removed.".format(self.largest_time_step - 1)) self.reference_points = self.reference_points[self.reference_points < self.largest_time_step] # Raise an error if no valid reference points was specified if len(self.reference_points) == 0: raise ValueError("No valid reference point.")
[docs] def construct_array(self, X, Y, Z, tau_max, extraZ=None, mask=None, mask_type=None, data_type=None, return_cleaned_xyz=False, do_checks=True, remove_overlaps=True, cut_off='2xtau_max', verbosity=0): """Constructs array from variables X, Y, Z from data. Data is of shape (T, N) if analysis_mode == 'single', where T is the time series length and N the number of variables, and of (n_ens, T, N) if analysis_mode == 'multiple'. Parameters ---------- X, Y, Z, extraZ : list of tuples For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), ...]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class. tau_max : int Maximum time lag. This may be used to make sure that estimates for different lags in X and Z all have the same sample size. mask : array-like, optional (default: None) Optional mask array, must be of same shape as data. If it is set, then it overrides the self.mask assigned to the dataframe. If it is None, then the self.mask is used, if it exists. mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} Masking mode: Indicators for which variables in the dependence measure I(X; Y | Z) the samples should be masked. If None, the mask is not used. Explained in tutorial on masking and missing values. data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. If it is set, then it overrides the self.data_type assigned to the dataframe. return_cleaned_xyz : bool, optional (default: False) Whether to return cleaned X,Y,Z, where possible duplicates are removed. do_checks : bool, optional (default: True) Whether to perform sanity checks on input X,Y,Z remove_overlaps : bool, optional (default: True) Whether to remove variables from Z/extraZ if they overlap with X or Y. cut_off : {'2xtau_max', 'tau_max', 'max_lag', 'max_lag_or_tau_max', 2xtau_max_future} If cut_off == '2xtau_max': - 2*tau_max samples are cut off at the beginning of the time series ('beginning' here refers to the temporally first time steps). This guarantees that (as long as no mask is used) all MCI tests are conducted on the same samples, independent of X, Y, and Z. - If at time step t_missing a data value is missing, then the time steps t_missing, ..., t_missing + 2*tau_max are cut out. The latter part only holds if remove_missing_upto_maxlag=True. If cut_off == 'max_lag': - max_lag(X, Y, Z) samples are cut off at the beginning of the time series, where max_lag(X, Y, Z) is the maximum lag of all nodes in X, Y, and Z. These are all samples that can in principle be used. - If at time step t_missing a data value is missing, then the time steps t_missing, ..., t_missing + max_lag(X, Y, Z) are cut out. The latter part only holds if remove_missing_upto_maxlag=True. If cut_off == 'max_lag_or_tau_max': - max(max_lag(X, Y, Z), tau_max) are cut off at the beginning. This may be useful for modeling by comparing multiple models on the same samples. - If at time step t_missing a data value is missing, then the time steps t_missing, ..., t_missing + max(max_lag(X, Y, Z), tau_max) are cut out. The latter part only holds if remove_missing_upto_maxlag=True. If cut_off == 'tau_max': - tau_max samples are cut off at the beginning. This may be useful for modeling by comparing multiple models on the same samples. - If at time step t_missing a data value is missing, then the time steps t_missing, ..., t_missing + max(max_lag(X, Y, Z), tau_max) are cut out. The latter part only holds if remove_missing_upto_maxlag=True. If cut_off == '2xtau_max_future': First, the relevant time steps are determined as for cut_off == 'max_lag'. Then, the temporally latest time steps are removed such that the same number of time steps remains as there would be for cut_off == '2xtau_max'. This may be useful when one is mostly interested in the temporally first time steps and would like all MCI tests to be performed on the same *number* of samples. Note, however, that while the *number* of samples is the same for all MCI tests, the samples themselves may be different. verbosity : int, optional (default: 0) Level of verbosity. Returns ------- array, xyz [,XYZ], data_type : Tuple of data array of shape (dim, n_samples), xyz identifier array of shape (dim,) identifying which row in array corresponds to X, Y, and Z, and the type mask that indicates which samples are continuous or discrete. For example: X = [(0, -1)], Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If return_cleaned_xyz is True, also outputs the cleaned XYZ lists. """ # # This version does not yet work with bootstrap # try: # assert self.bootstrap is None # except AssertionError: # print("This version does not yet work with bootstrap.") # raise if extraZ is None: extraZ = [] if Z is None: Z = [] # If vector-valued variables exist, add them def vectorize(varlag): vectorized_var = [] for (var, lag) in varlag: for (vector_var, vector_lag) in self.vector_vars[var]: vectorized_var.append((vector_var, vector_lag + lag)) return vectorized_var X = vectorize(X) Y = vectorize(Y) Z = vectorize(Z) extraZ = vectorize(extraZ) # Remove duplicates in X, Y, Z, extraZ X = list(OrderedDict.fromkeys(X)) Y = list(OrderedDict.fromkeys(Y)) Z = list(OrderedDict.fromkeys(Z)) extraZ = list(OrderedDict.fromkeys(extraZ)) if remove_overlaps: # If a node in Z occurs already in X or Y, remove it from Z Z = [node for node in Z if (node not in X) and (node not in Y)] extraZ = [node for node in extraZ if (node not in X) and (node not in Y) and (node not in Z)] XYZ = X + Y + Z + extraZ dim = len(XYZ) # Check that all lags are non-positive and indices are in [0,N-1] if do_checks: self._check_nodes(Y, XYZ, self.Ndata, dim) # Use the mask, override if needed _mask = mask if _mask is None: _mask = self.mask else: _mask = self._check_mask(mask = _mask) _data_type = data_type if _data_type is None: _data_type = self.data_type else: _data_type = self._check_mask(mask = _data_type, check_data_type=True) # Figure out what cut off we will be using if cut_off == '2xtau_max': max_lag = 2*tau_max elif cut_off == 'max_lag': max_lag = abs(np.array(XYZ)[:, 1].min()) elif cut_off == 'tau_max': max_lag = tau_max elif cut_off == 'max_lag_or_tau_max': max_lag = max(abs(np.array(XYZ)[:, 1].min()), tau_max) elif cut_off == '2xtau_max_future': ## TODO: CHECK THIS max_lag = abs(np.array(XYZ)[:, 1].min()) else: raise ValueError("max_lag must be in {'2xtau_max', 'tau_max', 'max_lag', "\ "'max_lag_or_tau_max', '2xtau_max_future'}") # Setup XYZ identifier index_code = {'x' : 0, 'y' : 1, 'z' : 2, 'e' : 3} xyz = np.array([index_code[name] for var, name in zip([X, Y, Z, extraZ], ['x', 'y', 'z', 'e']) for _ in var]) # Run through all datasets and fill a dictionary holding the # samples taken from the individual datasets samples_datasets = dict() data_types = dict() self.use_indices_dataset_dict = dict() for dataset_key, dataset_data in self.values.items(): # Apply time offset to the reference points ref_points_here = self.reference_points - self.time_offsets[dataset_key] # Remove reference points that are out of bounds or are to be # excluded given the choice of 'cut_off' ref_points_here = ref_points_here[ref_points_here >= max_lag] ref_points_here = ref_points_here[ref_points_here < self.T[dataset_key]] # Keep track of which reference points would have remained for # max_lag == 2*tau_max if cut_off == '2xtau_max_future': ref_points_here_2_tau_max = self.reference_points - self.time_offsets[dataset_key] ref_points_here_2_tau_max = ref_points_here_2_tau_max[ref_points_here_2_tau_max >= 2*tau_max] ref_points_here_2_tau_max = ref_points_here_2_tau_max[ref_points_here_2_tau_max < self.T[dataset_key]] # Sort the valid reference points (not needed, but might be useful # for detailed debugging) ref_points_here = np.sort(ref_points_here) # For cut_off == '2xtau_max_future' reduce the samples size the # number of samples that would have been obtained for cut_off == # '2xtau_max', removing the temporally latest ones if cut_off == '2xtau_max_future': n_to_cut_off = len(ref_points_here) - len(ref_points_here_2_tau_max) assert n_to_cut_off >= 0 if n_to_cut_off > 0: ref_points_here = np.sort(ref_points_here) ref_points_here = ref_points_here[:-n_to_cut_off] # If no valid reference points are left, continue with the next dataset if len(ref_points_here) == 0: continue if self.bootstrap is not None: boot_blocklength = self.bootstrap['boot_blocklength'] if boot_blocklength == 'cube_root': boot_blocklength = max(1, int(len(ref_points_here)**(1/3))) # elif boot_blocklength == 'from_autocorrelation': # boot_blocklength = \ # get_block_length(overlapping_residuals.T, xyz=np.zeros(N), mode='confidence') elif type(boot_blocklength) is int and boot_blocklength > 0: pass else: raise ValueError("boot_blocklength must be integer > 0, 'cube_root', or 'from_autocorrelation'") # Chooses THE SAME random seed for every dataset, maybe that's what we want... # If the reference points are all the same, this will give the same bootstrap # draw. However, if they are NOT the same, they will differ. # TODO: Decide whether bootstrap draws should be the same for each dataset and # how to achieve that if the reference points differ... # random_state = self.bootstrap['random_state'] random_state = deepcopy(self.bootstrap['random_state']) # Determine the number of blocks total, rounding up for non-integer # amounts n_blks = int(math.ceil(float(len(ref_points_here))/boot_blocklength)) if n_blks < 10: raise ValueError("Only %d block(s) for block-sampling," %n_blks + " choose smaller boot_blocklength!") # Get the starting indices for the blocks blk_strt = random_state.choice(np.arange(len(ref_points_here) - boot_blocklength), size=n_blks, replace=True) # Get the empty array of block resampled values boot_draw = np.zeros(n_blks*boot_blocklength, dtype='int') # Fill the array of block resamples for i in range(boot_blocklength): boot_draw[i::boot_blocklength] = ref_points_here[blk_strt + i] # Cut to proper length ref_points_here = boot_draw[:len(ref_points_here)] # Construct the data array holding the samples taken from the # current dataset samples_datasets[dataset_key] = np.zeros((dim, len(ref_points_here)), dtype = dataset_data.dtype) for i, (var, lag) in enumerate(XYZ): samples_datasets[dataset_key][i, :] = dataset_data[ref_points_here + lag, var] # Build the mask array corresponding to this dataset if _mask is not None: mask_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool') for i, (var, lag) in enumerate(XYZ): mask_dataset[i, :] = _mask[dataset_key][ref_points_here + lag, var] # Take care of masking use_indices_dataset = np.ones(len(ref_points_here), dtype = 'int') # Build the type mask array corresponding to this dataset if _data_type is not None: data_type_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool') for i, (var, lag) in enumerate(XYZ): data_type_dataset[i, :] = _data_type[dataset_key][ref_points_here + lag, var] data_types[dataset_key] = data_type_dataset # Remove all values that have missing value flag, and optionally as well the time # slices that occur up to max_lag after if self.missing_flag is not None: missing_anywhere = np.array(np.where(np.any(np.isnan(samples_datasets[dataset_key]), axis=0))[0]) if self.remove_missing_upto_maxlag: idx_to_remove = set(idx + tau for idx in missing_anywhere for tau in range(max_lag + 1)) else: idx_to_remove = set(idx for idx in missing_anywhere) use_indices_dataset[np.array(list(idx_to_remove), dtype='int')] = 0 if _mask is not None: # Remove samples with mask == 1 conditional on which mask_type # is used # Iterate over defined mapping from letter index to number index, # i.e. 'x' -> 0, 'y' -> 1, 'z'-> 2, 'e'-> 3 for idx, cde in index_code.items(): # Check if the letter index is in the mask type if (mask_type is not None) and (idx in mask_type): # If so, check if any of the data that correspond to the # letter index is masked by taking the product along the # node-data to return a time slice selection, where 0 # means the time slice will not be used slice_select = np.prod(mask_dataset[xyz == cde, :] == False, axis=0) use_indices_dataset *= slice_select # Accordingly update the data array samples_datasets[dataset_key] = samples_datasets[dataset_key][:, use_indices_dataset == 1] ## end for dataset_key, dataset_data in self.values.items() # Save used indices as attribute if len(ref_points_here) > 0: self.use_indices_dataset_dict[dataset_key] = ref_points_here[use_indices_dataset==1] else: self.use_indices_dataset_dict[dataset_key] = [] # Concatenate the arrays of all datasets array = np.concatenate(tuple(samples_datasets.values()), axis = 1) if _data_type is not None: type_array = np.concatenate(tuple(data_types.values()), axis = 1) else: type_array = None # print(np.where(np.isnan(array))) # print(array.shape) # Check whether there is any valid sample if array.shape[1] == 0: raise ValueError("No valid samples") # Print information about the constructed array if verbosity > 2: self.print_array_info(array, X, Y, Z, self.missing_flag, mask_type, type_array, extraZ) # Return the array and xyz and optionally (X, Y, Z) if return_cleaned_xyz: return array, xyz, (X, Y, Z), type_array return array, xyz, type_array
def _check_nodes(self, Y, XYZ, N, dim): """ Checks that: * The requests XYZ nodes have the correct shape * All lags are non-positive * All indices are less than N * One of the Y nodes has zero lag Parameters ---------- Y : list of tuples Of the form [(var, -tau)], where var specifies the variable index and tau the time lag. XYZ : list of tuples List of nodes chosen for current independence test N : int Total number of listed nodes dim : int Number of nodes excluding repeated nodes """ if np.array(XYZ).shape != (dim, 2): raise ValueError("X, Y, Z must be lists of tuples in format" " [(var, -lag),...], eg., [(2, -2), (1, 0), ...]") if np.any(np.array(XYZ)[:, 1] > 0): raise ValueError("nodes are %s, " % str(XYZ) + "but all lags must be non-positive") if (np.any(np.array(XYZ)[:, 0] >= N) or np.any(np.array(XYZ)[:, 0] < 0)): raise ValueError("var indices %s," % str(np.array(XYZ)[:, 0]) + " but must be in [0, %d]" % (N - 1)) # if np.all(np.array(Y)[:, 1] != 0): # raise ValueError("Y-nodes are %s, " % str(Y) + # "but one of the Y-nodes must have zero lag")
[docs] def print_array_info(self, array, X, Y, Z, missing_flag, mask_type, data_type=None, extraZ=None): """ Print info about the constructed array Parameters ---------- array : Data array of shape (dim, T) Data array. X, Y, Z, extraZ : list of tuples For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), ...] . missing_flag : number, optional (default: None) Flag for missing values. Dismisses all time slices of samples where missing values occur in any variable and also flags samples for all lags up to 2*tau_max. This avoids biases, see section on masking in Supplement of [1]_. mask_type : {'y','x','z','xy','xz','yz','xyz'} Masking mode: Indicators for which variables in the dependence measure I(X; Y | Z) the samples should be masked. If None, the mask is not used. Explained in tutorial on masking and missing values. data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. """ if extraZ is None: extraZ = [] indt = " " * 12 print(indt + "Constructed array of shape %s from"%str(array.shape) + "\n" + indt + "X = %s" % str(X) + "\n" + indt + "Y = %s" % str(Y) + "\n" + indt + "Z = %s" % str(Z)) if extraZ is not None: print(indt + "extraZ = %s" % str(extraZ)) if self.mask is not None and mask_type is not None: print(indt+"with masked samples in %s removed" % mask_type) if self.data_type is not None: print(indt+"with %s % discrete values" % np.sum(data_type)/data_type.size) if self.missing_flag is not None: print(indt+"with missing values = %s removed" % self.missing_flag)
[docs]def get_acf(series, max_lag=None): """Returns autocorrelation function. Parameters ---------- series : 1D-array data series to compute autocorrelation from max_lag : int, optional (default: None) maximum lag for autocorrelation function. If None is passed, 10% of the data series length are used. Returns ------- autocorr : array of shape (max_lag + 1,) Autocorrelation function. """ # Set the default max lag if max_lag is None: max_lag = int(max(5, 0.1*len(series))) # Initialize the result autocorr = np.ones(max_lag + 1) # Iterate over possible lags for lag in range(1, max_lag + 1): # Set the values y1_vals = series[lag:] y2_vals = series[:len(series) - lag] # Calculate the autocorrelation autocorr[lag] = np.corrcoef(y1_vals, y2_vals, ddof=0)[0, 1] return autocorr
[docs]def get_block_length(array, xyz, mode): """Returns optimal block length for significance and confidence tests. Determine block length using approach in Mader (2013) [Eq. (6)] which improves the method of Pfeifer (2005) with non-overlapping blocks In case of multidimensional X, the max is used. Further details in [1]_. Two modes are available. For mode='significance', only the indices corresponding to X are shuffled in array. For mode='confidence' all variables are jointly shuffled. If the autocorrelation curve fit fails, a block length of 5% of T is used. The block length is limited to a maximum of 10% of T. Mader et al., Journal of Neuroscience Methods, Volume 219, Issue 2, 15 October 2013, Pages 285-291 Parameters ---------- array : array-like data array with X, Y, Z in rows and observations in columns xyz : array of ints XYZ identifier array of shape (dim,). mode : str Which mode to use. Returns ------- block_len : int Optimal block length. """ # Inject a dependency on siganal, optimize from scipy import signal, optimize # Get the shape of the array dim, T = array.shape # Initiailize the indices indices = range(dim) if mode == 'significance': indices = np.where(xyz == 0)[0] # Maximum lag for autocov estimation max_lag = int(0.1*T) # Define the function to optimize against def func(x_vals, a_const, decay): return a_const * decay**x_vals # Calculate the block length block_len = 1 for i in indices: # Get decay rate of envelope of autocorrelation functions # via hilbert trafo autocov = get_acf(series=array[i], max_lag=max_lag) autocov[0] = 1. hilbert = np.abs(signal.hilbert(autocov)) # Try to fit the curve try: popt, _ = optimize.curve_fit( f=func, xdata=np.arange(0, max_lag+1), ydata=hilbert, ) phi = popt[1] # Formula of Pfeifer (2005) assuming non-overlapping blocks l_opt = (4. * T * (phi / (1. - phi) + phi**2 / (1. - phi)**2)**2 / (1. + 2. * phi / (1. - phi))**2)**(1. / 3.) block_len = max(block_len, int(l_opt)) except RuntimeError: warnings.warn("Error - curve_fit failed for estimating block_shuffle length, using" " block_len = %d" % (int(.05 * T))) # block_len = max(int(.05 * T), block_len) # Limit block length to a maximum of 10% of T block_len = min(block_len, int(0.1 * T)) return block_len
[docs]def lowhighpass_filter(data, cutperiod, pass_periods='low'): """Butterworth low- or high pass filter. This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. Parameters ---------- data : array Data array of shape (time, variables). cutperiod : int Period of cutoff. pass_periods : str, optional (default: 'low') Either 'low' or 'high' to act as a low- or high-pass filter Returns ------- data : array Filtered data array. """ try: from scipy.signal import butter, filtfilt except: print('Could not import scipy.signal for butterworth filtering!') fs = 1. order = 3 ws = 1. / cutperiod / (0.5 * fs) b, a = butter(order, ws, pass_periods) if np.ndim(data) == 1: data = filtfilt(b, a, data) else: for i in range(data.shape[1]): data[:, i] = filtfilt(b, a, data[:, i]) return data
[docs]def smooth(data, smooth_width, kernel='gaussian', mask=None, residuals=False, verbosity=0): """Returns either smoothed time series or its residuals. the difference between the original and the smoothed time series (=residuals) of a kernel smoothing with gaussian (smoothing kernel width = twice the sigma!) or heaviside window, equivalent to a running mean. Assumes data of shape (T, N) or (T,) :rtype: array :returns: smoothed/residual data Parameters ---------- data : array Data array of shape (time, variables). smooth_width : float Window width of smoothing, 2*sigma for a gaussian. kernel : str, optional (default: 'gaussian') Smoothing kernel, 'gaussian' or 'heaviside' for a running mean. mask : bool array, optional (default: None) Data mask where True labels masked samples. residuals : bool, optional (default: False) True if residuals should be returned instead of smoothed data. verbosity : int, optional (default: 0) Level of verbosity. Returns ------- data : array-like Smoothed/residual data. """ if verbosity > 0: print("%s %s smoothing with " % ({True: "Take residuals of a ", False: ""}[residuals], kernel) + "window width %.2f (=2*sigma for a gaussian!)" % (smooth_width)) totaltime = len(data) if kernel == 'gaussian': window = np.exp(-(np.arange(totaltime).reshape((1, totaltime)) - np.arange(totaltime).reshape((totaltime, 1)) ) ** 2 / ((2. * smooth_width / 2.) ** 2)) elif kernel == 'heaviside': import scipy.linalg wtmp = np.zeros(totaltime) wtmp[:int(np.ceil(smooth_width / 2.))] = 1 window = scipy.linalg.toeplitz(wtmp) if mask is None: if np.ndim(data) == 1: smoothed_data = (data * window).sum(axis=1) / window.sum(axis=1) else: smoothed_data = np.zeros(data.shape) for i in range(data.shape[1]): smoothed_data[:, i] = ( data[:, i] * window).sum(axis=1) / window.sum(axis=1) else: if np.ndim(data) == 1: smoothed_data = ((data * window * (mask==False)).sum(axis=1) / (window * (mask==False)).sum(axis=1)) else: smoothed_data = np.zeros(data.shape) for i in range(data.shape[1]): smoothed_data[:, i] = (( data[:, i] * window * (mask==False)[:, i]).sum(axis=1) / (window * (mask==False)[:, i]).sum(axis=1)) if residuals: return data - smoothed_data else: return smoothed_data
[docs]def weighted_avg_and_std(values, axis, weights): """Returns the weighted average and standard deviation. Parameters --------- values : array Data array of shape (time, variables). axis : int Axis to average/std about weights : array Weight array of shape (time, variables). Returns ------- (average, std) : tuple of arrays Tuple of weighted average and standard deviation along axis. """ values[np.isnan(values)] = 0. average = np.ma.average(values, axis=axis, weights=weights) variance = np.sum(weights * (values - np.expand_dims(average, axis) ) ** 2, axis=axis) / weights.sum(axis=axis) return (average, np.sqrt(variance))
[docs]def time_bin_with_mask(data, time_bin_length, mask=None): """Returns time binned data where only about non-masked values is averaged. Parameters ---------- data : array Data array of shape (time, variables). time_bin_length : int Length of time bin. mask : bool array, optional (default: None) Data mask where True labels masked samples. Returns ------- (bindata, T) : tuple of array and int Tuple of time-binned data array and new length of array. """ T = len(data) time_bin_length = int(time_bin_length) if mask is None: sample_selector = np.ones(data.shape) else: # Invert mask sample_selector = (mask == False) if np.ndim(data) == 1.: data.shape = (T, 1) if mask is not None: mask.shape = (T, 1) else: sample_selector = np.ones(data.shape) bindata = np.zeros( (T // time_bin_length,) + data.shape[1:], dtype="float32") for index, i in enumerate(range(0, T - time_bin_length + 1, time_bin_length)): # print weighted_avg_and_std(fulldata[i:i+time_bin_length], axis=0, # weights=sample_selector[i:i+time_bin_length])[0] bindata[index] = weighted_avg_and_std(data[i:i + time_bin_length], axis=0, weights=sample_selector[i:i + time_bin_length])[0] T, grid_size = bindata.shape return (bindata.squeeze(), T)
[docs]def trafo2normal(data, mask=None, thres=0.001): """Transforms input data to standard normal marginals. Assumes data.shape = (T, dim) Parameters ---------- data : array Data array of shape (time, variables). thres : float Set outer points in CDF to this value. mask : bool array, optional (default: None) Data mask where True labels masked samples. Returns ------- normal_data : array-like data with standard normal marginals. """ def trafo(xi): xisorted = np.sort(xi) yi = np.linspace(1. / len(xi), 1, len(xi)) return np.interp(xi, xisorted, yi) normal_data = np.copy(data) if np.ndim(data) == 1: if mask is None: nonmasked = np.where(np.isnan(data) == False)[0] else: nonmasked = np.where((mask==0)*(np.isnan(data) == False)) u = trafo(data[nonmasked]) u[u==0.] = thres u[u==1.] = 1. - thres normal_data[nonmasked] = stats.norm.ppf(u) else: for i in range(data.shape[1]): if mask is None: nonmasked = np.where(np.isnan(data[:,i]) == False)[0] else: nonmasked = np.where((mask[:, i]==0)*(np.isnan(data[:, i]) == False)) # nonmasked = np.where(mask[:, i]==0) # print(data[:, i].shape, nonmasked.shape) uniform = trafo(data[:, i][nonmasked]) # print(data[-3:, i][nonmasked]) uniform[uniform==0.] = thres uniform[uniform==1.] = 1. - thres normal_data[:, i][nonmasked] = stats.norm.ppf(uniform) return normal_data
@jit(nopython=True) def _get_patterns(array, array_mask, patt, patt_mask, weights, dim, step, fac, N, T): v = np.zeros(dim, dtype='float') start = step * (dim - 1) for n in range(0, N): for t in range(start, T): mask = 1 ave = 0. for k in range(0, dim): tau = k * step v[k] = array[t - tau, n] ave += v[k] mask *= array_mask[t - tau, n] ave /= dim var = 0. for k in range(0, dim): var += (v[k] - ave) ** 2 var /= dim weights[t - start, n] = var if (v[0] < v[1]): p = 1 else: p = 0 for i in range(2, dim): for j in range(0, i): if (v[j] < v[i]): p += fac[i] patt[t - start, n] = p patt_mask[t - start, n] = mask return patt, patt_mask, weights
[docs]def ordinal_patt_array(array, array_mask=None, dim=2, step=1, weights=False, verbosity=0): """Returns symbolified array of ordinal patterns. Each data vector (X_t, ..., X_t+(dim-1)*step) is converted to its rank vector. E.g., (0.2, -.6, 1.2) --> (1,0,2) which is then assigned to a unique integer (see Article). There are faculty(dim) possible rank vectors. Note that the symb_array is step*(dim-1) shorter than the original array! Reference: B. Pompe and J. Runge (2011). Momentary information transfer as a coupling measure of time series. Phys. Rev. E, 83(5), 1-12. doi:10.1103/PhysRevE.83.051122 Parameters ---------- array : array-like Data array of shape (time, variables). array_mask : bool array Data mask where True labels masked samples. dim : int, optional (default: 2) Pattern dimension step : int, optional (default: 1) Delay of pattern embedding vector. weights : bool, optional (default: False) Whether to return array of variances of embedding vectors as weights. verbosity : int, optional (default: 0) Level of verbosity. Returns ------- patt, patt_mask [, patt_time] : tuple of arrays Tuple of converted pattern array and new length """ from scipy.misc import factorial array = array.astype('float64') if array_mask is not None: assert array_mask.dtype == 'int32' else: array_mask = np.zeros(array.shape, dtype='int32') if np.ndim(array) == 1: T = len(array) array = array.reshape(T, 1) array_mask = array_mask.reshape(T, 1) # Add noise to destroy ties... array += (1E-6 * array.std(axis=0) * random_state.random((array.shape[0], array.shape[1])).astype('float64')) patt_time = int(array.shape[0] - step * (dim - 1)) T, N = array.shape if dim <= 1 or patt_time <= 0: raise ValueError("Dim mist be > 1 and length of delay vector smaller " "array length.") patt = np.zeros((patt_time, N), dtype='int32') weights_array = np.zeros((patt_time, N), dtype='float64') patt_mask = np.zeros((patt_time, N), dtype='int32') # Precompute factorial for c-code... patterns of dimension # larger than 10 are not supported fac = factorial(np.arange(10)).astype('int32') # _get_patterns assumes mask=0 to be a masked value array_mask = (array_mask == False).astype('int32') (patt, patt_mask, weights_array) = _get_patterns(array, array_mask, patt, patt_mask, weights_array, dim, step, fac, N, T) weights_array = np.asarray(weights_array) patt = np.asarray(patt) # Transform back to mask=1 implying a masked value patt_mask = np.asarray(patt_mask) == False if weights: return patt, patt_mask, patt_time, weights_array else: return patt, patt_mask, patt_time
[docs]def quantile_bin_array(data, bins=6): """Returns symbolified array with equal-quantile binning. Parameters ---------- data : array Data array of shape (time, variables). bins : int, optional (default: 6) Number of bins. Returns ------- symb_array : array Converted data of integer type. """ T, N = data.shape # get the bin quantile steps bin_edge = int(np.ceil(T / float(bins))) symb_array = np.zeros((T, N), dtype='int32') # get the lower edges of the bins for every time series edges = np.sort(data, axis=0)[::bin_edge, :].T bins = edges.shape[1] # This gives the symbolic time series symb_array = (data.reshape(T, N, 1) >= edges.reshape(1, N, bins)).sum( axis=2) - 1 return symb_array.astype('int32')
[docs]def var_process(parents_neighbors_coeffs, T=1000, use='inv_inno_cov', verbosity=0, initial_values=None): """Returns a vector-autoregressive process with correlated innovations. Wrapper around var_network with possibly more user-friendly input options. DEPRECATED. Will be removed in future. """ print("data generating models are now in toymodels folder: " "from tigramite.toymodels import structural_causal_processes as toys.") return None
[docs]def structural_causal_process(links, T, noises=None, intervention=None, intervention_type='hard', seed=None): """Returns a structural causal process with contemporaneous and lagged dependencies. DEPRECATED. Will be removed in future. """ print("data generating models are now in toymodels folder: " "from tigramite.toymodels import structural_causal_processes as toys.") return None
if __name__ == '__main__': from tigramite.toymodels.structural_causal_processes import structural_causal_process ## Generate some time series from a structural causal process def lin_f(x): return x def nonlin_f(x): return (x + 5. * x**2 * np.exp(-x**2 / 20.)) links = {0: [((0, -1), 0.9, lin_f)], 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.3, nonlin_f)], 2: [((2, -1), 0.7, lin_f), ((1, 0), -0.2, lin_f)], } random_state_1 = np.random.default_rng(seed=1) random_state_2 = np.random.default_rng(seed=2) random_state_3 = np.random.default_rng(seed=3) noises = [random_state_1.standard_normal, random_state_2.standard_normal, random_state_3.standard_normal] ens = 3 data_ens = {} for i in range(ens): data, nonstat = structural_causal_process(links, T=100, noises=noises) data[10, 1] == 999. data_ens[i] = data # print(data.shape) frame = DataFrame(data_ens, missing_flag=999., analysis_mode = 'multiple') print(frame.T) X=[(0, 0)] Y=[(0, 0)] Z=[(0, -3)] tau_max=5 frame.construct_array(X, Y, Z, tau_max, extraZ=None, mask=None, mask_type=None, return_cleaned_xyz=False, do_checks=True, cut_off='2xtau_max', verbosity=4)